Dependency Grammar Induction via Bitext Projection Constraints
ثبت نشده
چکیده
Broad-coverage annotated treebanks necessary to train parsers do not exist for many resource-poor languages. The wide availability of parallel text and accurate parsers in English has opened up the possibility of grammar induction through partial transfer across bitext. We consider generative and discriminative models for dependency grammar induction that use word-level alignments and a source language parser (English) to constrain the space of possible target trees. Unlike previous approaches, our framework does not require full projected parses, allowing partial, approximate transfer through linear expectation constraints on the space of distributions over trees. We consider several types of constraints that range from generic dependency conservation to language-specific annotation rules for auxiliary verb analysis. We evaluate our approach on Bulgarian and Spanish CoNLL shared task data and show that we consistently outperform unsupervised methods and can outperform supervised learning for limited training data.
منابع مشابه
Dependency Grammar Induction via Bitext Projection Constraints
Broad-coverage annotated treebanks necessary to train parsers do not exist for many resource-poor languages. The wide availability of parallel text and accurate parsers in English has opened up the possibility of grammar induction through partial transfer across bitext. We consider generative and discriminative models for dependency grammar induction that use word-level alignments and a source ...
متن کاملPosterior Regularization for Structured Latent Varaible Models
We present posterior regularization, a probabilistic framework for structured, weakly supervised learning. Our framework efficiently incorporates indirect supervision via constraints on posterior distributions of probabilistic models with latent variables. Posterior regularization separates model complexity from the complexity of structural constraints it is desired to satisfy. By directly impo...
متن کاملPosterior Regularization for Structured Latent Variable Models
We present posterior regularization, a probabilistic framework for structured, weakly supervised learning. Our framework efficiently incorporates indirect supervision via constraints on posterior distributions of probabilistic models with latent variables. Posterior regularization separates model complexity from the complexity of structural constraints it is desired to satisfy. By directly impo...
متن کاملCapitalization Cues Improve Dependency Grammar Induction
We show that orthographic cues can be helpful for unsupervised parsing. In the Penn Treebank, transitions between upperand lowercase tokens tend to align with the boundaries of base (English) noun phrases. Such signals can be used as partial bracketing constraints to train a grammar inducer: in our experiments, directed dependency accuracy increased by 2.2% (average over 14 languages having cas...
متن کاملConcavity and Initialization for Unsupervised Dependency Grammar Induction
We examine models for unsupervised learning with concave log-likelihood functions. We begin with the most well-known example, IBM Model 1 for word alignment (Brown et al., 1993), and study its properties, discussing why other models for unsupervised learning are so seldom concave. We then present concave models for dependency grammar induction and validate them experimentally. Despite their sim...
متن کامل